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ABSTRACT

The capability to make quick, effective decisions under uncertainty
is critical for Army mission success. One of the most promising
ways to deliver and enhance this capability is through recommender
systems, which predict needs in advance to prioritize networked in-
formation delivery. While many promising recommender methods
exist that might fulfill this need, it is unclear how recommendations
should be presented to C3I analysts. This is because recommender
systems are typically studied in low-risk, high bandwidth domains,
which has contributed to an increased focus on maximizing subjec-
tive user satisfaction (rather than objective success) while relying
on copious amounts of global data. This is in contrast to C3I, which
is often practiced under high-risk, low bandwidth (tactical network-
ing) conditions. Since each decision made under such conditions
can affect mission success and survival rate, analysts accordingly re-
quire a higher level of transparency and provenance for information
systems. Moreover, since global uplinks are not always available,
C3I analysts require the ability to process information locally in
both time and space. Here, we describe two highly transparent,
domain-oriented recommendation methodologies to support the
needs of C3I analysts, depending on whether or not recommen-
dations need to be calculated locally. Each method demonstrates
its theoretical effectiveness on a popular recommender systems
benchmark, but further evaluation is needed for the C3I domain.
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1 INTRODUCTION

The amount of information available to C3I operators will continue
to increase due to advances in pervasive sensing, which creates
a concern about how to leverage this rich information without
overloading the cognitive abilities of operators [12]. A potential
solution for this problem lies in intelligent information systems,
such as recommender systems, that automatically filter and de-
liver relevant information. Despite this promise, university and
commercial research on recommender systems typically violate
the assumptions of tactical network conditions - sparse data, low
bandwidth, intermittent connectivity, adversarial intervention, and
high consequences for poor decisions. To meet the needs of C3I,
recommender systems need to be adapted to be less complex, more
transparent, more robust, and more local.

High performance recommender systems are comprised of com-
plex algorithms, which are difficult or impossible to understand
for most users. Collaborative filtering (CF) approaches, which have
demonstrated superior predictive power, have several issues that

make them unsuitable for tactical networking: cold-start limitations,
reliance on dense global preference data, and low inherent trans-
parency. While these systems would be quite effective in low-risk
or commercial applications, decision makers in high-risk military
applications may struggle with placing their confidence in these
types of systems, which can be unpredictable in their behavior. This
is for three reasons: 1) the underlying models of CF algorithms are
ignorant of domain constraints and are limited in their ability to
keep the human in-the-loop, 2) humans, who frequently overesti-
mate their own abilities while downplaying the abilities of others
[22], may ignore CF recommendations when flaws are perceived,
and 3) automation bias [9] may cause poor decisions if over-trust
develops. This creates a catch-22 for Al design, and has contributed
to the rising popularity of the notion of explainable AI [14, 30].

To address trust concerns [28], recommender systems researchers
have proposed various ways to improve the transparency of their
systems, such as providing justifications or explanations to users.
“Explanation research” has been furthered in both expert and rec-
ommender systems [27], and approaches usually detail a “trace of
logic” of that system’s operation. For instance, case-based reasoning
systems may present a multi-point argument for why a particular
course of action is recommended [1]. Collaborative filtering recom-
mender systems may reveal part of the social network structure that
was used to generate the recommendation [16]. Typically, these
explanations have been designed to maximize system-specific trust
[24], with little regard for over-trusting [17] or automation bias.
Simultaneously, many explanations from recommender systems
sometimes do not provide users with a mechanism to provide direct
feedback to system.

In a further complication, many explanations are dependent
on the properties of the algorithms they explain. For instance, a
collaborative filtering explanation (e.g., the recommended item is
liked by friends of friends), would not work for a decision tree.
One consequence of this is that empirical evaluations of different
explanation styles must make compromises when comparing across
algorithms. This makes it difficult to pin down a “best” explanation
method - since such a method may not even be compatible with
future algorithms. This difficulty was identified by the Nunes et
al. [27] survey, which calls for more reproducibility in explanation
evaluation via divorcing algorithmic reasoning from its explanation.
In this research, we refer to these as universal explanations, since
they are compatible across algorithms.

The above issues highlight that intelligent information systems
are too complex to be suitable for C3I, that their explanations do
little to remedy problems caused by their complexity, and resorting
to simple information systems would compromise their accuracy.
Is this a catch-22 situation? How can we design simple, transpar-
ent interfaces for recommender systems that do not compromise
accuracy or universality? We hypothesized that the answer may
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lie in research on human decision making. Before the rise in pop-
ularity of recommender systems, decision technology culminated
in the use of multi-attribute utility (MAU) [10]. MAU’s influence
can be seen on almost every e-commerce website and has inspired
many content-based recommender systems [2, 18] MAU has also
gained traction in tactical networking research - interviews with
C3I operators yielded a preference for the interface [32]. This may
be because MAU is simple in concept, locally computed, and easy
to explain.

To answer our research question, this paper details two methods
for building MAU interfaces for recommender systems while acco-
modating tactical networking constraints. The core inspiration of
each approach is to use complex learning algorithms to configure
simple models of users that make domain-oriented predictions. In
this case, the simple model is the MAU form, which generates an
accordingly simple interface. The interface is thus “initially con-
figured” by the learning method, which can be overridden by the
user. This removes the need for the C3I analyst to perfectly under-
stand the learning algorithm, which may be impossible in some
cases (e.g., neural networks [25] or matrix factorization [19]). The
next section details the first method, which details heuristics for
building accurate MAU models based on a limited amount of user
preferences. In the following section we detail the second method,
which uses a CF algorithm as a starting point to boost the user
model, sacrificing some locality and speed for improved accuracy.
We also formalize the idea of “advice translation,” a way of thinking
about how to automatically generate universal explanations for
recommender systems, and more broadly, intelligent information
systems.

2 METHOD 1: MAUSVR

This section presents the first method, MAUSVR, which learns user
preferences directly from previously consumed or liked items. An
key observation necessary for this approach is that support-vector
regression (SVR) with a linear kernel produces a model that is a
weighted linear sum of products of domain features — essentially
a MAU model (MAUM). However, building MAUM using naive
SVR has fairly poor performance on the ranking problem when
compared with CF techniques and even does worse than ranking by
the mean average rating. We present a few heuristic modifications
to SVR that can produce more effective MAUM. The resulting tech-
nique, which we call MAUSVR, can instantaneously learn a user’s
preferences for attributes and thereby provide recommendations.
Although preference/rating data in the C3I domain is not yet avail-
able, this initial study uses a sample of the MovieLens 20M dataset
consisting of 5 million ratings was used to assess ranking quality,
robustness to sparsity, and speed. The evaluation presented here
indicates that MAUSVR would be suitable for tactical networks.
Moreover, the resulting method is competitive with CF in terms of
accuracy, and as long as domain features are provided, remains as
domain-independent as SVR itself. MAUSVR was able to be built
instantaneously (< 100ms) for more than 75% of the evaluated users
with an off-the shelf Java implementation of SMOreg. These find-
ings indicate promise for the use of MAUSVR in real-time decision
support systems operating in sparse data conditions.
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2.1 Description of the Method

MAUSVR aims to learn the MAUM of an individual user’s prefer-
ences through support-vector regression (SVR). A MAUM can be
described as:

fx)=w-¢(x)+b (1)
where ¢(x) returns an array that are the attribute values of item
x. This results in simply a linear sum of weighted attributes. Here,
an SMOreg implementation is used [31] to build MAUM, however,
some modifications are needed to achieve high quality of item rank-
ing. The modifications are based on two observations. First, any
number of MAUM can be linearly combined into a single model
that still matches the form of an MAUM, such that the weights (w)
are the weighted sums of the ensemble weights and the bias (b) is
the weighted sum of the ensemble biases. Second, the mean item
rating approach, which is relatively stable at all sample sizes, is sur-
prisingly good at the ranking problem. In this section we describe
the three modifications, which each have associated parameters.
In each case, a greedy linear sampling strategy was used on the
MovieLens dataset to determine the ideal value for the parameter.
First, a bagging approach [5] was utilized to improve both the
ranking quality and speed of SMOreg. The time complexity of
support vector regression is also fairly bad: O(max(n, d)min(n, d)%)
[8], so limiting the maximum size of any bag greatly improves the
scalability of the approach. The number of learners in the ensemble
I was determined with the following function of a user’s profile
size, |P|:

(P .
I'=10+ min| ——,200 (2)

max

To minimize the worst case build time of the ensemble, our
evaluation suggests that the maximum number of iterations should
be limited to 210 and the maximum bag size, By, qx, should be set
to 100.

Although tuning experiments indicated that accuracy slightly
increases as I increases past 210, MAUSVR will also become less
suited to being used as an interactive system, as update times will
become longer. In our tuning of MAUSVR, capping the value of
I at 210 sacrifices very little ranking quality while still having an
average/median build time that is instantaneous (< 100ms) and a
worst case build time that can still keep the user’s attention (about
3 seconds) [26].

Second, mean ratings should be used to boost the performance of
MAUSVR. Fortunately, mean ratings do not require large amounts
of global data to get good estimates: assuming a standard deviation
of 1.0 stars, it only takes 50 samples to estimate a mean rating to
within about a quarter of a star (this also means that mean ratings
do not have to be updated frequently). In MAUSVR, this “baseline”
MAUM (Mp) can be blended with the trained ensemble model
(M) to produce the rating prediction of item r; by quantifying the
confidence «a of the latter, as follows:

ri = aMe(i) + (1 — a)Mp (i) ®)

Since the predictive power of the ensemble model increases only
as the user’s profile size increases, quantifying the confidence is
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relatively straightforward. The following function, wherein f is a
tuning parameter, of the user’s profile size |P| was used:

v log2P|)

Third, SVR needs a way to deal with discrete attributes. One
way to handle discrete-valued attributes A € {ay, ag, ...an} is by
creating n new numeric attributes a; € {0, 1}, however, this can
quickly lead to an overwhelming number of attributes for a human
decision maker to consider. This problem is exacerbated when
the attribute can take multiple values (e.g. movie genre and cast).
Having excessive attributes with little mutual information can also
hurt the performance of SMOreg. For instance, a single movie can
have hundreds of cast members, perhaps few of which could be
found elsewhere in a user’s profile. For this reason the total number
of discrete attributes was pruned down to a reasonable subset. In the
implementation of MAUSVR, a cutoff was used to remove attribute
columns that had fewer than € instances. € was determined with
the following function, which has one tuning parameter y affecting
the cutoft:

4)

e=y2 ©)

Based on our experimentation, we recommend MAUSVR’s § and

y parameters to be fixed to 6.0 and 75.0 respectively. Additionally,

the “slack” variable C in each SVR has to be set. We found that

the ensemble method was not particularly sensitive to C, however,

smaller values of C result in faster build times. Thus, we recommend
setting C to 0.1.

2.2 Evaluation

MAUSVR was evaluated based on its performance on the ranking
problem in comparison with CF (similar to [20]). The MovieLens
20M dataset was used for evaluation. As of this writing, CF tech-
niques (including matrix factorization) still achieve the highest
accuracy scores on this dataset. The first 5 million of the 20 million
ratings were selected (the ordering of MovieLens is randomized)
and the remaining were discarded to decrease the time needed for
evaluation. For the remaining 5 million ratings, some of the rated
items had missing attribute values and were discarded. Then, the
dataset was pruned one final time by removing users that had fewer
than 20 ratings, resulting a dataset with just under 4.8 million rat-
ings, which we will call ML5M. For each user in ML5M, the 20%
most recent ratings provided by that user were set aside as the test-
ing set. The remaining 80% of ratings were used as training data. 12
experiments were run, with each experiment randomly discarding
up to 99% of the training data for each user in the dataset, resulting
in the 12 different densities shown on the x-axis of Figure 1. One
additional dataset was created where all but 10 item ratings for each
user were removed, which we refer to as the “10-item” dataset. This
was intended to mimic situations where ratings are being elicited
to “cold-start” a recommendation algorithm.

MAUSVR was compared to CF algorithms in the popular LensKit
API [11]: Item-Item CF (IICF), FunkSVD (FUNK), and Slope-One
(SLOPEL1). Additionally, all algorithms were compared to the mean
rating approach (AVG RATING). User-User CF was considered, but
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was not included in the final experiment due to poor performance
and long training times relative to IICF.

The tuning parameters in the CF approaches were maximized
using a greedy linear sampling strategy: FUNK was run with 25
hidden features and the deviation damping of SLOPE1 was set to
1.0. It is important to note that the mean item rating approach was
set as the baseline for all CF algorithms, that is, the average rating
is used when the CF similarity matrix does not connect a user to a
specific item. In this evaluation, we focus on the ranking problem,
since prediction accuracy is irrelevant to decision-making domains
(for instance, it is not useful to predict very accurately that a piece
of information is not irrelevant). The median number of items in a
profile’s test set was 15, so NDCG@5 is used.

We evaluate MAUSVR’s build times with objective standards of
interactiveness [26] rather than comparatively with CF. This was
for three reasons, which relate to accuracy, comparative fairness,
and relevance: first, implementation details can severely impact
build times; second, cold builds of the CF algorithms in Lenskit can
take upwards of fifteen minutes; and third, MAUSVR is targeted for
interactive systems and thus instantaneous responses (< 100ms)
are desired. It might be possible to modify the Lenskit implementa-
tions of CF to update interactively (for instance, in user-user CF,
a user could theoretically get updated recommendations by only
calculating a single row in the matrix), however, it is unknown if
instantaneous timings could be achieved and thus it is outside the
scope of this work.

Movie content for use in the MAUSVR training process was
pulled from the TMDb API'. Features analyzed were: runtime, rev-
enue, genre, language, collection (e.g. “Star Wars,” “Marvel”), direc-
tor, lead actor, cast (multiple categorical), and user-generated tags
(multiple categorical). For each categorical and multiple categorical
feature, SMOreg will add additional columns for each discrete value
that the feature takes. “Cast” and “Tags” were pruned according
to Equation 5. When the learned ensemble M, is blended with
the baseline M}, the “mean rating” attribute is added to the final
MAUM. The final weight of this attribute is determined solely by
Equations 3 and 4.

2.2.1 Ranking Quality. A comparison of ranking quality (NDCG@5)

gain plotted against data density is shown in Figure 1. NDCG@5
gain is the difference in NDCG@5 between the algorithm and the
result obtained from randomly shuffling the test set. Data density
is the inversion of sparsity, or the number of ratings available over
the size of the user/item matrix. MAUSVR performs best at the
ranking problem until data density reaches 0.30%. MAUSVR per-
forms 47% better than FUNK and 37% better than AVG RATING at
0.04% data density. However, MAUSVR performs 16% worse than
FUNK at 0.73% density. At no point does MAUSVR drop below the
performance of AVG RATING, which makes it unique amongst the
algorithms evaluated.

A comparison of NDCG@5 on the 10-item rating dataset is
shown in Figure 2. MAUSVR is the only algorithm that can beat
the AVG RATING approach, which it does by 22%.

2.2.2  Build Speed. Figure 3 illustrates the relationship between
profile size and build time. The average profile size was 147 ratings

Uhttps://www.themoviedb.org/
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Figure 1: NDCG@5 gain over random shuffling for each
algorithm that was evaluated, for the various densities
that were sampled. MAUSVR has superior NDCG@5 under
sparse conditions, which are common in other recommen-
dation contexts and predicted to affect the C4ISR domain.
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Figure 2: NDCG@5 gain over random shuffling for each al-
gorithm that was evaluated, for the 10-item dataset.

with an average build time of 75 milliseconds. The median profile
size was 71 ratings with a build time of 4 milliseconds. The third
quartile build time was 74 milliseconds with a profile size of 160.
The max build time was 3.2 seconds for a profile size of 2993.

Although the time complexity of an SVR is O(max(n, d)min(n, d)?)
[8], the size of any SVR problem n in MAUSVR was fixed to be at
most 100, and the total number of learners in the ensemble is limited
to 210. This means that the time complexity of MAUSVR is simply
o(d®).

3 METHOD 2: ADVICE TRANSLATION

Here we introduce the concept of advice translation — an approach
to automatically generating universal explanations for recommender
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Figure 3: The build time (milliseconds) for each user profile,
plotted against the number of ratings. For users in the first
three quartiles the build time was instantaneous (< 74ms).

systems. The explanations built using this method rationalize the
output of algorithms into domain terminology through a proxy
model. This is in contrast with existing perspectives and method-
ologies that seek to explain the way an algorithm works or that
merely highlight features of recommended items. Herein we demon-
strate one method of advice translation, which uses support-vector
regression to generate a MAU interface for matrix factorization
provided only a domain ontology and the list of predictions. Similar
to the first method, this allows a user to visualize what the matrix
factorization model has learned in domain terms and provide inter-
active feedback, however, this approach can take better advantage
of global data relationships by piggybacking on CF.

This section assesses the feasibility of the proposed advice trans-
lation approach. The challenge is to specify a technique for building
the proxy model (with a linear internal representation) such that it
does not mis-translate what MF has learned about the user. In other
words, the proxy model should order the list of all potential items
in a way identical to MF. A quantitative analysis of the proposed
approach is given showing that it can achieve NDCG@{5,10} [34]
within 1% of the original MF model, which we believe makes it a
fair representation.

3.1 Description of the Method

In this section we describe the advice translation approach as a
high level concept, then we give the details on how this approach
was implemented to explain an MF algorithm through an MAU
interface.

3.2 Overview of the Approach

Figure 4 shows an overview of the advice translation approach
to explain the output of recommender systems. Conceivably, this
approach could be used for any body of predictions (classed or
numeric), but here we limit the scope to recommender systems,
which essentially serve to re-rank databases of items according to
a learned user model. The upper (blue) part of Figure 4 shows the
typical process of recommendation. In the absence of the advice
translation process, the predictions (in orange) would simply be
presented to the user. What we propose is to instead build a second,
simpler user model that represents the original model in more famil-
iar domain terms. Specifically, the representation is parameterized
by real concepts from the domain and the predictions are used to
learn what these parameters should be to minimize the difference
in item ranking. This can be accomplished by treating the list of
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Figure 4: Overview of the advice translation process, show-
ing the typical recommendation process (blue) and the pro-
posed explanation building method (green).

predictions from the first model as a machine learning problem,
where the class of each instance is the prediction and the features
of each instance are domain attributes. For instance, a decision tree
can be built that describes instances of restaurants in terms of the
style of food, the price, popularity, and so on. A representation of
the proxy model and its parameters are then presented to the user,
who can provide feedback and tweak the user-friendly proxy.

The advice translation approach is similar to hybrid recommen-
dation [6], but there are two fundamental differences. The first is
that the proxy algorithm is not involved in the prediction process.
This is because it should be only used to present the predictions.
Unclassified instances or database items can be passed to the origi-
nal algorithm/user model and subsequently a new proxy should be
built for each session. This also implies the proxy model should be
re-built when more profile information is obtained from the user.
Second, the purpose of hybridizing recommendation strategies is to
maximize the predictive accuracy of such algorithms at the cost of
simplicity, whereas the purpose of advice translation is to maximize
transparency and trust at the potential cost of predictive accuracy,
in line with Gunning et al. [14].

The primary challenge of advice translation is to prevent dis-
tortion of the ranking generated by the original recommendation
algorithm. This can be caused due to differences in the degrees of
freedom between the original and proxy models. Advice translation,
like any other content-based explanation, also requires a domain
model to be known, and for each instance or database item to be
annotated.
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3.3 An Example of Advice Translation: Using
SVR as a Proxy of MF

To demonstrate the feasibility of advice translation, here we cre-
ate an MAU interface through support vector regression (SVR) to
explain a matrix factorization (MF) model. Conceivably, the SVR
methodology described here should work for any ranking algorithm
and any domain, as long as the prediction values and instance at-
tributes can be provided. This approach works essentially because
SVR with a linear kernel has the same form (sum of weighted at-
tributes) as an MAU process for determing the relevance r of an
item x in the database of alternatives (Formula 1). Once the weights
are learned, these can be used as the default weights in an MAU
interface, which can then be inspected and further tweaked by
users.

An ideal proxy for an MF model learned for a specific user is the
set of weights @ that eliminates differences in rank ordering (here,
we use NDCG@k) when the utility function r(x) is computed for
all items X and the items are sorted in descending order by r(x).
When the NDCG is 1.0, the weights of the MAU are the ones that
exactly replicate the ordering of the original MF algorithm.

We used the Weka [35] implementation of SVR as a proxy for
the Lenskit [11] implementation of FunkSVD (an efficient imple-
mentation of MF). We conducted an offline experiment involving
954 MovieLens [15] users wherein the NDCG of FunkSVD and the
proxy model built by SVR was compared. The experiment process
was similar to Figure 4, except we also set aside each user’s most
recent ratings as a test set. We evaluate the NDCG of the proxy
to recreate the list of predictions generated by FunkSVD and the
NDCG of the proxy to order each user’s training data. As further
validation, we compare the performance of FunkSVD to the proxy
on the test set, although this situation falls outside the practice of
advice translation. RMSEA and MAE (see [7]) were considered but
ultimately not included, since SVR may distort the scale of each
prediction. This would be inconsequential for an MAU interface,
since the idea of utility is unit-less [23].

The FunkSVD model was built using the same sample of 5 million
random ratings from MovieLens, similar to the evaluation for the
first method. 20% of the most recent ratings were set aside as a test
set. Then, a list of predictions was generated for each user in the
sample. Again, the predictions were annotated with the same set
of attributes in the first evaluation (pulled from the TMDb API).
Then, each user was treated as an individual machine learning
problem by our custom Weka code, which built an SVR on each set
of annotated predictions using the TMDDb data as features and the
FunkSVD prediction as the class value.

A principal challenge in training SVR on the FunkSVD prediction
data was poor scalability [31]. In our experimentation, training
set sizes of greater than 2K instances quickly become too time-
intensive to be practical for interactive interfaces, however, the
list of predictions generated for each user by FunkSVD was about
16K. To get around this limitation, we experimented with several
sampling strategies and built multiple learners, each with a fraction
of the available prediction data. Due to the unique constraints on the
advice translation problem, it is possible to select the best learner
from the ensemble by testing performance on the training data
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Sampling Strategy | Description

RANDOM-N N learners of training set size 1.6K are created. The list of 16K predictions is broken up into 1.6K lists
of 10 predictions and a random instance is chosen from each list. We evaluate RANDOM-N with
N=1,N=5N=10,and N = 15.

SPREAD-N The list of 16K predictions is broken up into N lists by omitting instances that are not a modulo of N.

and N = 15.

For instance N = 10, the first list contains the 1st, 11th, 21st, and so on items. This effectively uses
every single prediction in the dataset. We evaluate \textit{SPREAD-N} with N = 8, N = 10, N = 12,

Table 1: Sampling strategies used to evaluate the advice translation approach.

Method | NDCG@5 | NDCG@10 |
FunkSVD | 0.9038 0.9230
Proxy 0.8971 0.9138
MAUSVR | 0.8943

Table 2: Performance of FunkSVD and its SVR proxy on the
test set. MAUSVR is included for comparison - the proxy
method makes a slight gain over MAUSVR (about a 40% im-
provement when adjusting for the baseline).

after the build step. Note that this step is only valid because over-
fitting is not an issue. If the relevance of new instances needs to be
predicted, FunkSVD can perform the predictions and a new proxy
can be built. We tested the sampling strategies shown in Table 1.

3.4 Results

We tested each sampling strategy and measured precision@k and
NDCG@k. NDCG@5,10,100 are used since lower listings are less
relevant. Moreover, as k grows, NDCG asymptotically approaches
1.0, so this information is less useful in evaluation. For precision, we
considered any prediction value greater than 5.0 a hit, and anything
less a miss. This is because FunkSVD generates many predictions
of > 5.0 before undergoing typical normalization steps. Results
are shown in Figure 1. The random strategies performed almost
uniformly worse than the spread strategies, with SPREAD-12 per-
forming the best. As can be seen, Precision@k and NDCG@k are
strongly correlated. Moreover, the NDCG@100 vs the NDCG@5 re-
sults indicate every sampling strategy would become more slightly
more confused as the number of predictions shown increases. The
Precision@5 results indicate that in the top five recommendations,
there is a 50% chance of one prediction being confused.

Next, Table 2 shows the performance of FunkSVD on the test set
when compared with its proxy. This test illustrates the performance
of the proxy by familiar standards of recommendation research.
The difference in NDCG@5 of FunkSVD and its proxy is only 0.74%,
which grows to a mere 1% for NDCG@10.

4 DISCUSSION

The first method, MAUSVR, shows promise for tactical networking
conditions. Under sparse conditions of rating availability, MAUSVR
had an NDCG@5 gain that was up to 47% higher than FunkSVD.
Like other content-based approaches, performance at high sparsity
is due to effective leveraging of domain information. MAUSVR also

performs strictly above the average rating approach, due to the un-
certainty quantification modification. In CF techniques, uncertainty
cannot be captured as easily, since accuracy depends on the sparsity
of the item-item or user-user matrix. For this reason, CF techniques
are often hybridized with other approaches to boost performance
on sparse data, however, this comes at the cost of increased sys-
tem complexity and opaqueness - whereas MAUSVR’s model is
unaffected by blending with the average rating approach. Addi-
tionally, MAUSVR was able to be built instantaneously < 100ms
for more than 75% of profiles, using un-optimized Java code and
off-the-shelf implementations of SMOreg. Some users would ex-
perience delays of greater than 100ms, but no more than 3000ms.
Nielsen’s research [26] suggests that at this limit the system would
need to show indications of operation, but that user flow would not
be adversely affected. This implies a responsive, MAUM-style user
interface could be immediately built on top of MAUSVR, similar to
[3] and [4].

The second evaluation presented here has demonstrated the
feasibility of the SVR advice translation approach for arbitrary algo-
rithms. The advice translation approach can work for discrete class
based classifiers as well, conceivably even very opaque learners
such as convolutional neural networks (e.g., [21]). However, SVM
would need to be used instead of SVR. New strategies for building
proxy models would need to be used, since we cannot say with
confidence that the sampling strategies described here would gen-
eralize to other proxy methods. This is perhaps the biggest hurdle
to future advice translation approaches, especially as database sizes
increase. The number of items needing to be predicted in this ex-
ample was fairly modest at 16K. As the number of items needing
to be ranked increases, the sampling strategy must become more
and more sparse to accommodate the costly build times of SVR.

Both of the approaches described in this paper have the limi-
tation of requiring information to be modeled in domain terms.
However, we believe that this should not be seem as a limitation
specific to the advice translation approach, but as a cost that must
be paid to create transparent systems. The cost may well be worth
it: content-based explanations have been shown to be preferable
by users [13], so the pursuit of rich content information should
be seen as worthwhile. Moreover, in Edwards et al’s [10] original
survey of decision technology, it was noted that the main chal-
lenge to MAU interfaces is the collection of content data. However,
this is becoming easier in recent years: the internet of things [36],
crowd-sourcing [33], and pervasive computing [29] have partially
automated the process of creating rich databases of metadata.
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Figure 2 shows the accuracy difference between MAUSVR and
the advice translation (Proxy) approach. The difference appears to
be small, however, when accounting for the baseline NDCG (0.82),
it becomes just under a 40% improvement. This implies a hybrid
approach might be best - when the uplink is available, recommenda-
tions could be generated via CF and presented via advice translation.
When the uplink becomes unavailable or fails, MAUSVR could be
used as a backup. However, this schema ignores other human us-
ability issues - human factors research is needed to determine if
the small NDCG gain is worth the added system complexity.

5 CONCLUSION

In summary, this research has presented two recommendation meth-
ods that target the high risk C3I domain. The recommendation tech-
niques draw their inspiration from multi-attribute utility, which
may enable improved human comprehension of recommendations.
While both methods have demonstrated their promise on a popular
recommender systems benchmark, more offline and online evalua-
tion is needed to determine their impact on key Army capabilities.
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