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Abstract 

In a distributed and semi-autonomous environment, network breaches must be detected prior to 

reaching the highly-valued targets or networked devices—this requires proactive adversarial 

modeling that is behavior or anomaly-based and capable of operating in a high-speed network 

environment.  Using an intelligent agent architecture and machine learning, I propose a network 

intrusion detection system (NIDS) that is flow-based to produce alerts on malicious and/or 

anomalous traffic.  With this proposed semi-supervised learning approach, I detect botnet traffic 

and distinguish it from the normal and background network traffic in the network session or flow 

datasets (i.e., NetFlow files).  I evaluate the prediction performance and computational resource 

utilization results for the flow-based NIDS algorithms and compare these results with signature-

based NIDS that are reactive by design.  With this approach, I show an improvement in detection 

accuracy and NIDS efficiency when compared with traditional signature-based NIDS and other 

probabilistic modeling approaches examined on these network traffic datasets.  In addition, the 

model improvements reduce the burden on the human analysts to sift through NIDS alerts that 

are often riddled with false alarms.   
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1 Introduction 

Since the late 1980s, researchers have studied and developed intrusion detection systems (IDS) 

using anomaly and behavior-based detection models that leverage techniques from machine 

learning and more broadly statistics (Denning, 1987; Smaha, 1988; Vaccaro & Liepins, 1989; 

Wang & Stolfo, 2004; Tsai et al., 2009; Harang & Mell, 2016; Leslie et al., 2018).  Although 

there have been many successes in detecting network breaches in data confidentiality, integrity, 

and availability, these network IDS (NIDS) are still plagued with high false-positive alerts — 

these notifications misclassify benign network activities as malicious which also has adverse 

impacts on the personnel who must generate security incident reports: they may disregard the 

IDS tools generating above some tolerable threshold of false-positive alerts which, in turn, can 

result in true-positive alerts going unreported (Denning, 1987; Tsai et al., 2009; Leslie et al., 

2017; Shearer et al., 2018).   

 

IDSs are generally categorized in terms of whether they use signature or behavior-based 

detection models (e.g., anomaly detection models), and their location on a host or network 

(Wang & Stolfo, 2004; Hu et al., 2009).  Organizations face a variety of information security 

vulnerabilities and threats, and though signature-based IDS are needed to identify violations of 

security policies, they are insufficient for guarding against previously unidentified vulnerabilities 

or new exploits that are also called “zero-day attacks.”  Whereas, anomaly or novelty-based 

detection algorithms for IDS are capable of detecting network breaches where no signature exists 

(Yeung & Chow, 2002).  However, these models can also be subverted.  

 

Semi-supervised or unsupervised learning algorithms for anomaly-based network IDS (NIDS) 

provide greatly needed solutions for network and information security in the face of previously 



unidentified vulnerabilities.  They provide the security analyst with required tools to further 

investigate and protect an organization’s networks and its proprietary data.  To address these 

research challenges, there are two main contributions in this paper to intrusion detection 

research.   

1. I develop a novel anomaly-based NIDS algorithm called Semi-Supervised Learning of 

Exploits and Exploit Kits (SSLEEK) to detect network intrusions with various 

characteristics, including performing distributed denial of service (DDoS), and port 

scanning.  SSLEEK’s pre-processing module is based on a distance metric for IPv4 

addresses — these are categorical features requiring conversion to real-valued features 

for implementation in the machine learning algorithms.   

2. Using K-means clustering, Gaussian Mixture Model (GMM), and the k-nearest neighbors 

(k-NN) algorithms, I examine and compare SSLEEK’s prediction performance results.  

These modeling techniques can be applied to both host-based systems and networks of 

various types, ranging from tactical mobile ad hoc networks (MANETs) to commercial 

enterprise networks.    

 

The remainder of this paper is divided in the following sections: in Section 2, related work is 

presented; in Section 3, the datasets for training and testing the machine learning algorithms for 

the NIDS are presented; in Section 4, the modeling approaches are further described; and in 

Section 5, the results are presented; and in Section 6, the concluding remarks are presented. 

2 Related Work 

Over the past ten years, various machine learning algorithms have been used to enhance NIDS 

detection accuracy, and limited comparison studies and surveys exist to help determine which 



algorithms are best suited for NIDS given the networks’ vulnerabilities (Gu et al., 2007; Tsai et 

al., 2009; Garcia et al., 2014).  One of several taxonomies for IDS that leverage machine learning 

techniques is defined by the following: single classifiers or clustering methods characterized by 

using one machine learning algorithm (e.g., k-NN, K-means, support vector machines); hybrid 

algorithms consist of two functional components, where the first takes raw input data and 

performs some intermediate processing, and the second component takes as input the 

intermediate step’s results and using some computational algorithm yields the final results; and 

ensemble algorithms are based on using boosting or bagging to vote on the final predictions of 

multiple machine learning algorithms (Tsai et al., 2009).   

 

For example, BotHunter is a hybrid algorithm based on the Snort IDS — this is a commercially 

available signature-based detection model — combined with two proprietary statistical methods 

to detect stages of the malware process or spread over the network: Statistical Scan Anomaly 

Detection Engine (SCADE), and Statistical Payload Anomaly Detection Engine (SLADE) that 

uses n-grams to assess the packet payload (Gu et al., 2007).  Additional examples of hybrid-

based intrusion detection algorithms include BClus and CAMNEP which are both behavior-

based models: BClus uses the Expectation-Maximization (EM) algorithm to cluster NetFlow 

data; and CAMNEP is a collaborative anomaly detection model (Gu et al., 2007; Garcia et al., 

2014).  The modeling approach for SSLEEK defined in this paper differs from those approaches 

in that SSLEEK is a behavior-based algorithm that analyzes network sessions processed from 

packet headers (i.e., NetFlow files) as the raw input data, and it uses a single classifier or 

clustering approach.   

 



Wang and Paschalidis (2017) develop an additional hybrid model for botnet detection that 

leverages the K-means algorithm — this two-stage approach uses an IPv4 distance metric on 

NetFlow data for the feature extraction step of implementing the K-means algorithm: (1) the first 

stage is an anomaly detection algorithm; and (2) the second stage detects the botnets using 

concepts from social network community detection that are based on graph-based approaches 

that approximate the graph degree distribution to capture node correlations over time.  Here, in 

this paper, SSLEEK differs from this approach and others in that although I also introduce a 

novel IPv4 distance metric, I apply a single algorithm approach which uses semi-supervised and 

supervised learning algorithms — these are k-NN, K-means clustering, and GMM approaches — 

for botnet detection.  I compare the performance of these machine learning algorithms on the 

CTU-13 botnet datasets, where the IPv4 address distance metric is either considered, or the IP 

addresses are excluded from the feature space. 

 

There is limited previous research on using these machine learning algorithms for detecting 

malicious traffic in network flow or sessions data (Eskin et al., 2002; Bouzida et al., 2004; Tsai 

et al., 2009; Om & Kundu, 2012; Celik et al., 2015).  Nonetheless, it is difficult to compare these 

anomaly detection models for IDS because a valuable comparison requires that similar datasets 

and network configurations be used for validating each method.  The modeling approach in this 

paper differs from other studies: the feature space consists of network session data derived from 

NetFlow files; the feature selection and extraction methods include converting categorical 

features (e.g., flags, protocols, IP addresses) to real-valued features with either a one-hot 

encoding method or a novel IP address distance metric.  The network sessions or flow data 

consists of packet header information exclusively. 



3 Network Traffic Datasets 

The Czech Technical University (CTU)-13 botnet datasets consist of packet capture (pcap) and 

NetFlow files that define thirteen diverse scenarios with distinct botnet characteristics 

summarized in Table 1 (Garcia, 2013).  Garcia (2013) creates NetFlow files from the pcap files 

for each CTU-13 scenario labelled based on ground truth as “normal” for network traffic to and 

from a benign node, “botnet” for network traffic to and from a bot node, and “background” 

otherwise.   

 

In Table 1, the number of flows in each category for the scenarios are presented (Garcia et al., 

2014).  The CTU-13 NetFlow data consist of categorical and real-valued features for the network 

flows or sessions: the real-valued features are duration (in seconds), source and destination ports, 

state, total packets sent, total bytes, and source bytes; and the categorical features are protocol 

(e.g., ICMP, TCP), and source and destination IP addresses.   

 

Table 1. Details on flow records from CTU-13 (Garcia et al., 2014). 

ID Characteristic Total 
flows 

Botnet 
flows 

Normal 
flows 

Background 
flows 

1 IRC, SPAM, Click Fraud (CF) 2,824,636 39,933 30,387 2,754,316 
2 IRC, SPAM, CF, FTP 1,808,122 18,839 9,120 1,780,163 
3 IRC, Port Scan (PS), US 4,710,638 26,759 116,887 4,566,992 
4 IRC, DDOS, US 1,121,076 1,719 25,268 1,094,089 
5 SPAM, PS, HTTP 129,832 695 4,679 124,458 
6 PS 585,919 4,431 7,494 573,994 
7 HTTP 144,077 37 1,677 142,363 
8 PS 2,954,230 5,052 72,822 2,876,356 
9 IRC, SPAM, PS, CF  2,753,884 17,880 43,340 2,692,664 
10 IRC, DDOS, US 1,309,791 106,315 15,847 1,187,629 
11 IRC, DDOS, US 107,251 8,161 2,718 96,372 
12 PP 325,471 2,143 7,628 315,700 
13 SPAM, PS, HTTP 1,925,149 38,791 31,939 1,854,419 

 



4 A Flow-Based Model for NIDS: SSLEEK  

To pre-process the feature space derived from the CTU-13 NetFlow data, one of the key steps is 

converting the categorical features to real-valued features.  For the categorical features selected 

in the NetFlow data, I use one-hot encoding, except for the IPv4 addresses.  Since there are 

numerous new IP addresses interacting with any given network on a regular basis, one-hot 

encoding for IP addresses in the network sessions would result in a high-dimensional feature 

space growing substantially with the ever-increasing number of new IP addresses interacting 

with a network.  I implement a novel IPv4 address distance metric in Equation (1) that computes 

the distance between any pair of IPv4 addresses in the feature space.  The distance between any 

two IPv4 addresses,  𝒙 = (𝑥%, 𝑥', 𝑥(, 𝑥)) and 𝒚 = (𝑦%, 𝑦', 𝑦(, 𝑦)) is given by 

 

𝐷(𝒙, 	𝒚) =/𝑎)12(𝑥2 ≠ 𝑦2)
)

24%

 (1) 

 

 where 𝑎 > 1	is a constant, and 𝑥7, 	𝑦7 ∈ {1, 2,… , 255} for 𝑘 = 1,… , 4.   

 

To improve the efficiency of SSLEEK, I implement Principal Component Analysis (PCA) to 

reduce the dimensionality of the feature space while maintaining 99% of the variability in the 

data.  Subsequently, I apply each the following three machine learning algorithms to detecting 

the various types of botnet traffic in the thirteen scenarios of the CTU-13.  First, I use K-means 

clustering for each scenario — this is an unsupervised learning algorithm that clusters unlabeled 

data — where I set 𝐾 = 2 representing two centroids which are initialized by the means of the 

malicious and benign training datasets, respectively.  Second, I implement the GMM, a soft 

clustering algorithm, that is estimated by the Expectation-Maximization (EM) algorithm, where 

again the means for the GMM are defined as they are in the K-means centroid-initialization 



phase.  The GMM differs from the K-means clustering algorithm in that the EM step makes 

probabilistic cluster assignments for network traffic rather than deterministic as with the K-

means algorithm (Hastie et al., 2008).  Both the K-means algorithm and GMM are applied to the 

CTU-13 botnet datasets with semi-supervised learning techniques, where the labeled data is used 

only in the centroid initialization phase of training, as opposed to defining unsupervised learning 

implementations for these algorithms.  Finally, I also apply the k-NN classification — this is a 

supervised learning method — to botnet detection for these network flow datasets.  Although 

these machine learning algorithms have been used widely in the literature, there are limited 

studies that use these algorithms to detect botnet traffic (Celik et al., 2015; Wang & Paschalidis, 

2017; Leslie et al., 2018).  I implement the k-NN, K-means, and GMM algorithms with semi-

supervised techniques in Python using the scikit-learn module (Buitinck et al., 2013).   

 

To cross validate the NetFlow data of each CTU-13 scenario, I divide it into training and testing 

sets with K-fold cross validation, where I set 𝐾 = 5.  This cross-validation technique has been 

used widely in classical statistics and machine learning in a variety of domains (Kohavi, 1995).  

In addition, I normalize the training set from each scenario, and using the mean and standard 

deviation from the training data, I subsequently normalize the testing set for the same scenario.   

5 Empirical Results 

The k-NN algorithm is a simple, nonparametric technique to classify samples (Bishop, 1995; 

Manocha & Girolami, 2007).  I examined different choices of k, the number of nearest 

neighbors, where 𝑘 = 2,… ,27, and various Lp-norms for 𝑝	 = 	1,… , 9.  The prediction 

performance of k-NN varies drastically with different choices of k and p.  For the k-NN 

prediction performance results, I set k = 7 and p = 3 and present the accuracy, precision, recall,  



 
Table 2. The prediction performance results for SSLEEK using a semi-supervised 
learning implementation of the k-NN, K-means, and GMM algorithms.  Best results 
are highlighted in bold font. 
Scenario ID ML algorithm Accuracy Precision Recall FPR% 

1  
k-NN 0.992 0.8000 0.616 0.2270% 

K-means 0.763 0.0320 0.518 23.3324% 
GMM 0.238 0.0092 0.482 76.5354% 

2  
k-NN 0.996 0.9430 0.725 0.0570% 

K-means 0.873 0.0820 0.980 12.8423% 
GMM 0.129 0.0003 0.020 86.9256% 

3 k-NN 0.998 0.8830 0.766 0.0580% 
K-means 0.926 0.0000 0.000 5.5330% 

4 
k-NN 0.997 0.5100 0.006 0.0400% 

K-means 0.998 0.9820 0.085 0.0004% 
GMM 0.731 0.0002 0.025 26.7090% 

5 
k-NN 0.990 0.6790 0.315 0.1770% 

K-means 0.721 0.0220 0.903 28.0142% 
GMM 0.716 0.0217 0.903 28.5479% 

6 
k-NN 0.999 0.9710 0.982 0.0480% 

K-means 0.748 0.0320 0.991 25.4173% 
GMM 0.267 0.0001 0.009 73.0627% 

7 
k-NN 0.999 0.5000 0.077 0.0080% 

K-means 0.774 0.0010 0.375 22.5533% 
GMM 0.290 0.0004 0.563 70.9724% 

8 
k-NN 0.998 0.5310 0.745 0.1370% 

K-means 0.778 0.0080 0.817 22.1980% 
GMM 0.008 0.0021 1.000 99.4537% 

9 
k-NN 0.965 0.8250 0.770 1.5880% 

K-means 0.763 0.1880 0.502 21.1191% 
GMM 0.242 0.0583 0.498 78.2548% 

10 
k-NN 0.999 0.9995 0.993 0.0040% 

K-means 0.969 0.8050 0.817 1.7534% 
GMM 0.050 0.0064 0.069 95.1203% 

11 
k-NN 0.999 0.9990 0.987 0.0100% 

K-means 0.969 0.7890 0.818 1.8052% 
GMM 0.929 0.5169 0.984 7.5842% 

12 
k-NN 0.994 0.5770 0.182 0.0900% 

K-means 0.941 0.0290 0.244 5.4221% 
GMM 0.842 0.0272 0.653 15.6747% 

13 
k-NN 0.990 0.8350 0.659 0.2760% 

K-means 0.782 0.0500 0.525 21.2310% 
GMM 0.773 0.0478 0.525 22.2086% 

 

and false positive rate (FPR).  Surprisingly, although k-NN is a simple learning algorithm, it 

provides quite accurate (i.e., good precision and recall values) results with relatively low FPR for 

an anomaly-based model for a NIDS.  In Table 2, the SSLEEK results with the k-NN, K-means, 



and GMM algorithms are presented for the CTU-13 botnet datasets for comparison, where the 

IPv4 addresses were excluded from the NetFlow feature extraction.    

 

Also, in Table 2 are the results of SSLEEK using the GMM algorithm.  This implementation 

suffered the worst performance in comparison with the k-NN and K-means implementations in 

SSLEEK: highest FPR and lowest precision and recall values.  For scenario ID 3, I did not test 

the GMM prediction performance on this dataset.  However, since K-means consistently 

outperforms the GMM implementation in SSLEEK for the other twelve scenarios in CTU-13, I 

present K-means predictions along with those of the k-NN classifier which performs best in this 

case. 

 

The prediction performance of SSLEEK with the k-NN algorithm far exceeds its effectiveness 

using the clustering algorithms, the K-means and the GMM for detecting these cyberattacks for 

all CTU-13 scenarios except two: IDs 4 and 5 (see Table 2).  For the DDoS scenario ID 4, 

although K-means is the best-performing algorithm, its prediction performance is not ideal: the 

precision and recall values for K-means are 0.9820 and 0.085, respectively; the k-NN 

implementation resulted in precision and recall equal to 0.5100 and 0.006, respectively; and the 

GMM had the worst predictions for this scenario with precision equal to 0.0002, and recall equal 

to 0.006.  For scenario ID 5, the GMM implementation in SSLEEK performs the worst, where 

precision is 0.0217, and recall is 0.903.  The K-means predictions are slightly better with 

precision at 0.0220 and recall also equal to 0.903.  Whereas, the k-NN algorithm has the 

following results: precision is 0.6790, and recall 0.315.  It depends on the objectives of the Cyber 

Security Service Provider (CSSP) to determine whether the k-NN implementation is better than 



that of K-means clustering in this scenario.  That is, if the CSSP values a high recall value over 

precision, then K-means is the best-performing algorithm.  However, if the CSSP values 

precision over recall, then the k-NN classifier is the best model for detecting botnet traffic.   

 

In Table 3, I present predictions for selected scenarios, where the SSLEEK feature space 

includes the IPv4 addresses converted to real-valued features with the novel IP distance metric in 

Eq. (1).  Although the prediction performance results for scenario IDs 10 and 11 in Table 3 are 

accurate, the results for other scenarios were poor and not presented. 

  

The SSLEEK predictions for the CTU-13 scenarios are best, when the IP addresses are excluded 

from the feature space (see Table 2).  In addition, the prediction performance of SSLEEK is quite 

impressive for many of the CTU-13 scenarios, including: (1) for ID 6, precision is 0.9710, and 

recall is 0.982; (2) for ID 10, precision is 0.9995, and recall is 0.993; and (3) for ID 11, precision 

is 0.9990, and recall is 0.987. 

6 Concluding Remarks 

In this paper, I develop SSLEEK, a novel modeling approach for anomaly-based NIDS that 

leverages machine learning algorithms to detect botnet traffic.  The raw data input for SSLEEK  

 

Table 3. The k-NN algorithm implementation in SSLEEK with 
the IPv4 distance metric for selected CTU-13 botnet scenarios. 
Scenario ID Precision Recall FPR% 

3 0.7778 0.0013 0.0000% 
10 0.9999 0.9886 0.0012% 
11 0.9988 0.9786 0.0101% 
12 0.0667 0.0023 0.0217% 

 



are NetFlow files that include categorical features converted to real-valued features in a pre-

processing step.  I either convert the source and destination IP addresses from the NetFlow data 

to real-valued features with the novel IPv4 address distance metric introduced in Section 4 with 

results presented in Table 2 or exclude the IP addresses from the feature space with results 

presented in Table 3.  For the other categorical features in the CTU-13 NetFlow files, I 

implement one-hot encoding for the conversion to real-valued features.  This feature extraction 

and modification step is followed by PCA to reduce the dimensionality of the feature space.  

Subsequently, I apply three semi-supervised learning algorithms to SSLEEK for the network 

flow-based intrusion detection: k-NN classifier, K-means clustering, and GMM.   

 

The advantages of SSLEEK include that it is effective at accurately detecting botnet traffic in the 

CTU-13 scenarios, especially with the k-NN algorithm.  Moreover, the k-NN classifier performs 

best, if the IP addresses are excluded from the feature selection phase (see Tables 2 and 3).  For 

scenario ID 4, one of the DDoS scenarios, SSLEEK has the best prediction performance with the 

K-means algorithm when excluding IP addresses from the feature space (see Table 2).  For 

scenario ID 5, selecting k-NN or K-means as the best-performing algorithm depends on the 

CSSP’s objectives for network security in the precision-recall tradeoff (see Table 2).  That is, 

which NIDS classification error is most detrimental to security: false-positive alerts; or false 

negatives, where there are no NIDS alerts on malicious traffic.   

 

Although the k-NN implementation in SSLEEK performs better than with the K-means and 

GMM, the k-NN algorithm has its limitations — labeled data is required.  For the K-means and 

GMM algorithms, unlabeled or quite sparsely labeled network flow datasets are adequate.  This 

is a strong advantage of these two clustering algorithms over the k-NN classifier for SSLEEK.  



In the event that only a sparsely labelled dataset is available, the K-means clustering is the best-

performing and best-suited algorithm for SSLEEK with the CTU-13 botnet scenarios. 
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