Regional Value Analysis at Threat Evaluation

Muhammet Metin İşcan Turkish Air War College

Agenda

Regional Value Analysis

Formulation

Overview of Air Defense

- Detection
- Identify
- Intercept
- Destroy

Threat Evaluation & Weapon Assignment

Threat Evaluation

As for air defense, threat is an aircraft, cruise missile or ballistic missile that aims to destroy, to defuse or to harm the functions of the targets. Threat evaluation is a process of prioritization and determination the enemy tracks with some specific methods.

Various decision support models for threat evaluation have been developed

Bayesian networks and fuzzy logic models come to the fore.

Weapon Assingment

Weapon assignment consists of finding an optimal assignment of a set of weapons of various types to a set of targets in order to maximize the total expected damage done to the opponent.

$$\prod_{k}^{T} \left(1 - \frac{\omega_{jk}}{\sum_{i}^{M}} \prod_{i}^{M} (1 - P_{ik})^{X_{ik}} \right)$$

 ω_{ik} – Threat`s priority

 X_{ik} – represents the assignment of as many weapons

 P_{ik} – probability of kill

Threat Evaluation

Liebhaber has identified 6 basic totally 18 parameters for threat evaluation.

Liebhaber & Feher

Basic origin, IFF mode, intel, air route, altitude, radar and electronic
Other airline, coordinated activity, speed, closest point of approach (CPA), feet wet/dry, maneuvers, number/composition, own support, range/distance, visibility, weapon envelope, wings clean/dirty

Threat Evaluation

Johansson divided same parameters into three groups

Johansson

Group	Parameters
Proximity Parameters	Range from Closest Point of Approach (CPA), Time to CPA, CPA in Units of Time, Time Before Hit and Distance
Capability Parameters	Target Type, Weapon Type, Fuel Capacity, Maximum Radius of Operation
Intent Parameters	Target's Kinematics, Number of Recent Maneuvers

Problem

Liebhaber & Feher

Johansson

0

		Group	Parameters
Basic	origin, IFF mode, intel, air route, altitude, radar and electronic	Proximity Parameters	Range from Closest Point of Approach (CPA), Time to CPA, CPA
Other	airline, coordinated activity, speed, closest point of approach (CPA), feet		in Units of Time, Time Before Hit and Distance
	wet/dry, maneuvers,	Capability	Target Type, Weapon Type, Fuel
	number/composition, own support, range/distance, visibility, weapon	Parameters	Capacity, Maximum Radius of Operation
	envelope, wings clean/dirty	Intent	Target's Kinematics, Number of
		Parameters	Recent Maneuvers

0

0

 \bigcirc

Regional Value Analysis

Classic Threat Evaluation

0

Formulation (Target Values)

Set and Variables		Formulas
A	: Set of Assets,	
a _j T _j	: Asset value, $j \in A$, : Asset priority : Vulnerability	
V _j R _j Alt.	: Repairing capability	$a_j = T_j + V_j$
D_j	: Distribution	+
Rng _j Lc _j	: Land condition	+
Dl _j Rdrc _j	: Diagnosis Level : Radar coverage	
SAMc _j RngB _j	: SAM coverage : Range to border	

$$a_{j} = T_{j} + V_{j} + R_{j} + Alt_{j} + D_{j}$$
$$+ Rng_{j} + Lc_{j} + Dl_{j}$$
$$+ Rdrc_{j} + SAMc_{j}$$
$$+ RngB_{j}$$

Formulation

Set and Variables

- A : Set of Assets,
- N : Set of Points,
- a_j : Target value, $j \in A$,
- **b**_{nj} : Point value,
- **u**_n : Updated point value,
- r_{nj} : Distance between target and point,

Rw : Most effective air to surface missile range,

Formulas

$$\boldsymbol{b}_{nj} = - \begin{cases} a_j & \text{if } r_{nj} \leq Rw, \\ 0 & \text{if } r_{nj} > Rw, \end{cases}$$
(1)

$$\boldsymbol{u}_{\boldsymbol{n}} = \frac{\sum_{j=1}^{|A|} \boldsymbol{b}_{nj}}{\max_{\boldsymbol{n}} \boldsymbol{b}_{nj}} \quad \forall j \in A, \forall \boldsymbol{n} \in \boldsymbol{N} \quad (2)$$

Regional Value Map

Within the Scenario 66 targets including strategic, operative and tactical level have been generated consisting bases, radars, Surface to Air Missile (SAM) batteries and command and control centers.

Conclusion

- Regional Defense
- Minimize Unpredictability
- Efficiency
- Accuracy \bullet

QUESTIONS

Muhammet Metin İşcan Turkish Air War College / İSTANBUL Email: metiniscan@gmail.com